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HAMILTONIAN CYCLES AND SUBSETS OF DISCOUNTED OCCUPATIONAL

MEASURES

ALI ESHRAGH1, JERZY A. FILAR2, THOMAS KALINOWSKI1,3, AND SOGOL MOHAMMADIAN1

Abstract. We study a certain polytope arising from embedding the Hamiltonian cycle problem in a dis-

counted Markov decision process. The Hamiltonian cycle problem can be reduced to finding particular ex-

treme points of a certain polytope associated with the input graph. This polytope is a subset of the space

of discounted occupational measures. We characterize the feasible bases of the polytope for a general input

graph G, and determine the expected numbers of different types of feasible bases when the underlying graph

is random. We utilize these results to demonstrate that augmenting certain additional constraints to reduce

the polyhedral domain can eliminate a large number of feasible bases that do not correspond to Hamiltonian

cycles. Finally, we develop a random walk algorithm on the feasible bases of the reduced polytope and present

some numerical results. We conclude with a conjecture on the feasible bases of the reduced polytope.

1. Introduction.

One of the classical problems of combinatorial mathematics is the Hamiltonian Cycle Problem (HCP),
named after the Irish mathematician, Sir William Rowan Hamilton. He designed the Icosian Game. To win
this game, a player must visit each of twenty specifically connected cities, represented by holes on a wooden
pegboard, exactly once and return to the starting point. The Hamiltonian cycle problem is a mathematically
generalized version of this game. Given a graph G, the aim is either to find a cycle that passes through every
node of G exactly once, or to determine that no such cycle exists. Cycles that pass through every node of the
graph exactly once are called Hamiltonian cycles. If the graph contains at least one Hamiltonian cycle, then it
is called Hamiltonian. Otherwise, it is non-Hamiltonian. Figures 1(a) and 1(b) show examples of Hamiltonian
and non-Hamiltonian graphs on five nodes.
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(a) A Hamiltonian graph
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(b) A non-Hamiltonian graph

Figure 1. Hamiltonian and non-Hamiltonian graphs

Despite originating in the 1850s, HCP continues to generate a great deal of research interest. The similarity
between HCP and the famous Traveling Salesman Problem (TSP) makes it interesting from a combinatorial
optimization viewpoint. As TSP aims to find a route of minimal distance for a salesman who starts from
a home location, visits every city exactly once and returns to the home location, HCP can be considered a
special case of this problem. To see this, for a given graph G, add artificial arcs (i, j) for every pair (i, j) of
distinct nodes which are not connected by an arc in G. If we assign distance one to each original arc and
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distance two to each artificial arc, the graph G is Hamiltonian if and only if there is a shortest route in the
modified graph with the total distance of n.

In 1976, Garey et al. [17] showed that HCP is an NP-complete problem. In particular, no-one has found
a solution algorithm with polynomial worst-case runtime. Its simple appearance, however, has captivated
many researchers, giving rise to a rich literature presenting theoretical and computational results about this
problem. In particular, TSP has been one of the major driving forces for the development of polyhedral theory
for combinatorial optimization. The TSP polytope is the convex hull of the Hamiltonian cycles of a complete
graph, and the great success with solving large instances of this problem is based on the deep insights into the
geometry and combinatorics of this polytope (see [3]).

Arguably, one of the central problems in theoretical Operations Research is TSP. While TSP has received a
lot of attention in the literature, much of its difficulty lies in the ‘visit all nodes exactly once’ constraint that is
captured mathematically in HCP. Since HCP is known to be NP-complete, probabilistic embedding approaches
such as the line of research continued in the present paper offers a pathway towards deeper understanding of
the essential difficulty of both HCP and TSP.

In 1994, Filar and Krass [15] proposed a new approach to HCP, embedding it into a Markov Decision Process
(MDP). An MDP comprises a state space, an action space, a function of transition probabilities between states
(conditioned on the actions taken by the decision maker) and a reward function. In the MDP’s basic setting,
the decision maker takes an action, receives a reward from the environment, and the environment changes
its state. Next, the decision maker identifies the state of the environment, takes a further action, obtains a
reward, and so forth. The state transitions are probabilistic, and depend solely on the actual state and the
action taken by the decision maker. The reward obtained by the decision maker depends on the action taken,
and on the current state of the environment. The decision maker’s actions in each environmental state are
prescribed by a policy. Markov decision processes are applicable to a wide range of optimization problems.
The model introduced in Filar and Krass [15] instigated a new line of research, which has attracted growing
attention (see, for example, [4, 7, 8, 10, 9, 11, 14, 16, 20]).

In 2000, Feinberg [14] investigated the relationship between HCP and discounted MDPs. In discounted
MDPs, a discount factor β ∈ (0, 1), which represents the difference in importance between future and present
rewards, is used to discount rewards. Feinberg showed that HCP can be viewed as a discounted MDP with
constraints. Part of his proof involved the construction of a new polytope corresponding to a given graph G,
which we shall refer to as Fβ(G). The polytope Fβ(G) is a subset of the space of discounted occupational
measures induced by the constrained discounted MDP. Feinberg showed that if the graph G is Hamiltonian, the
polytope Fβ(G) has an extreme point, called a Hamiltonian extreme point, for each of its Hamiltonian cycles.
Subsequently, Ejov et al. [10] described some geometric properties of Fβ(G) and Eshragh et al. [13] transformed
Fβ(G) to a polytope Hβ(G) to improve algorithmic efficiency. In 2011, Eshragh and Filar [12] partitioned
all extreme points of Hβ(G) into five types, consisting of Hamiltonian extreme points and non-Hamiltonian
extreme points of types 1, 2, 3 and 4. They constructed a new polytope WHβ(G) by adding new linear
constraints, called wedge constraints, to the polytope Hβ(G). They showed that, when the discount factor β is
sufficiently close to one, the wedge constraints remove the, typically, most abundant non-Hamiltonian extreme
points of types 2,3 and 4, while preserving the Hamiltonian extreme points.

In this paper, we develop geometric properties of the feasible bases of the polytope Hβ(G) and characterize
them. Moreover, we find the expected number of feasible bases associated with Hamiltonian extreme points as
well as each type of non-Hamiltonian extreme point in the random polytope Hβ(Gn,p) for an input binomial
random graph Gn,p. We show that in expectation, the feasible bases corresponding to non-Hamiltonian
extreme points of Type 4 are the majority. Motivated by the results of Eshragh and Filar [12], we construct
two algorithms based on a simple random walk on feasible bases of the two polytopes Hβ(G) andWHβ(G). We
use these two random walks to compare the numbers of feasible bases associated with Hamiltonian extreme
points in these two polytopes, and explore the efficiency of the wedge constraints. While computational
experiments confirm our analytical results on the feasible bases of the polytope Hβ(G), they reveal that the
wedge constraints improve algorithmic efficiency for values of the discount factor β sufficiently close to 1. All
these theoretical and computational results support a new conjecture on the feasible bases of the polytope
WHβ(G) stated at the end of the paper.
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The remainder of this paper is organized as follows: In Section 2 , we review some preliminary results and
introduce the polytope Hβ(G). In Section 3 , we characterize the feasible bases of Hβ(G). In Section 4 , we
investigate the expected prevalence of feasible bases of Hβ(Gn,p) for an input binomial random graph. More
precisely, we find the expected number of each type of feasible basis in the random polytope Hβ(Gn,p). In
Section 5 , we discuss the results of [13, 12] concerningWHβ(G). In Section 6 , we investigate the efficiency of
this polytope by developing and running two different random walk algorithms on feasible bases of the polytope
WHβ(G). In Section 7, we conclude with a conjecture on the feasible bases of the polytopeWHβ(Ḡn,p), where
Ḡn,p is a Hamiltonian binomial random graph.

2. Formulation of HCP through discounted MDPs.

Consider a directed graph G = (V,E), where V = {1, 2, . . . , n} is the set of nodes and E is the set of arcs.
Throughout this paper, G refers to such a directed graph on n nodes, unless otherwise stated. For each node
i ∈ V , we define the in-neighborhood set, N−(i), and the out-neighborhood set, N+(i), of i by

N−(i) = {j ∈ V : (j, i) ∈ E}, N+(i) = {j ∈ V : (i, j) ∈ E}.

For a node i ∈ V , its in-degree, denoted by degin(i), is the cardinality of N−(i), and its out-degree, denoted
by degout(i), is the cardinality of N+(i). The degree of i ∈ V , denoted by deg(i) is the total number of arcs
incident with i, that is, deg(i) = degin(i) + degout(i).

Let us consider a discounted Markov decision process with state space {1, 2, . . . , n}, action sets A(i), for
each state i, and a discount factor β ∈ (0, 1). The embedding of the original graph G in such an MDP is
based on a one-to-one correspondence of nodes of G with the states of MDP and actions in state i with arcs
emanating from node i. That is, A(i) = N+(i) for i = 1, 2, . . . , n. The Markovian transition probabilities
normally accompanying an MDP are particularly simple in this embedding. Namely, choice of an action
corresponding to arc (i, j) results in the transition from state i to state j, with probability one.

Using the above embedding, Feinberg [14] converted HCP to a constrained discounted MDP and showed
that finding a Hamiltonian cycle is equivalent to finding a structured extreme point of a certain polytope that
we shall call the Feinberg polytope Fβ(G). This result is made precise in Theorem 1, below.

Theorem 1 (Feinberg [14]). Consider the embedding of the graph G = (V,E) in a constrained discounted
MDP with a discount factor β and the polytope Fβ(G) characterized by

∑

j∈N+(1)

y1j − β
∑

j∈N−(1)

yj1 = 1, (1)

∑

j∈N+(i)

yij − β
∑

j∈N−(i)

yji = 0 for all i ∈ V \ {1}, (2)

∑

j∈N+(1)

y1j =
1

1− βn
, (3)

yij > 0 for all (i, j) ∈ E. (4)

The graph G is Hamiltonian if and only if there exists an extreme point of Fβ(G) that has exactly n positive
coordinates tracing out a Hamiltonian cycle in G.

In MDP literature the polyhedral domain defined by constraints (1), (2) and (4) is called the space of
discounted occupational measures. These spaces have been studied extensively (see, for example, [2, 19, 22]).
Indeed, Feinberg [14] exploited MDP properties of these measures to prove Theorem 1.
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Eshragh et al. [13] transformed the polytope Fβ(G) by changing variables xij := (1−βn)yij for all (i, j) ∈ E

to produce the polytope Hβ(G) ⊆ R
|E| defined by the constraints

∑

j∈N+(1)

x1j − β
∑

j∈N−(1)

xj1 = 1− βn, (5)

∑

j∈N+(i)

xij − β
∑

j∈N−(i)

xji = 0 for all i ∈ V \ {1}, (6)

∑

j∈N+(1)

x1j = 1, (7)

xij > 0 for all (i, j) ∈ E. (8)

Since values of β close to one were shown to be important in [12]–[13], this transformation eliminates numerical
instability in (3). In the remainder of this paper, A and b denote the constraint matrix and the right-hand
side vector of constraints (5)–(7), respectively. Indeed, A and b depend on the parameter β. However, for
simplicity and because we do not consider more than one value of β at a time, we do not make this dependence
on β explicit. The following definition is motivated directly from Theorem 1.

Definition 1. Let x be an extreme point of the polytope Hβ(G). If the positive coordinates of x trace
out a Hamiltonian cycle in the graph G, x is called a Hamiltonian extreme point. Otherwise, it is called a
non-Hamiltonian extreme point.

As an example, let us construct the polytope Hβ(G) for the graph given in Figure 1(a):

x12 + x14 + x15 − β(x21 + x41 + x51) = 1− β5

x21 + x23 − β(x12 + x32) = 0

x32 + x34 − β(x23 + x43) = 0

x41 + x43 + x45 − β(x14 + x34 + x54) = 0

x51 + x54 − β(x15 + x45) = 0

x12 + x14 + x15 = 1

x12, x14, x15, x21, x23, x32, x34, x41, x43, x45, x51, x54 > 0.

It can be written in the form Ax = b, x > 0 as follows:

















1 1 1 −β 0 0 0 −β 0 0 −β 0
−β 0 0 1 1 −β 0 0 0 0 0 0
0 0 0 0 −β 1 1 0 −β 0 0 0
0 −β 0 0 0 0 −β 1 1 1 0 −β
0 0 −β 0 0 0 0 0 0 −β 1 1
1 1 1 0 0 0 0 0 0 0 0 0

























































x12

x14

x15

x21

x23

x32

x34

x41

x43

x45

x51

x54









































=

















1− β5

0
0
0
0
1

















x12, x14, x15, x21, x23, x32, x34, x41, x43, x45, x51, x54 > 0.

It is easy to see that
{

x12 = 1, x23 = β, x34 = β2, x45 = β3, x51 = β4

x14 = x15 = x21 = x32 = x41 = x43 = x54 = 0

is an extreme point of Hβ(G). Furthermore, the set of arcs {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}, corresponding to
the non-zero variables, traces out a Hamiltonian cycle in the graph G.
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Theorem 1 shows that the polytope Hβ(G) reflects some properties of the Hamiltonian cycles in G and,
thus, can be utilized as the basis for a procedure to search for Hamiltonian cycles. This procedure is outlined
in Algorithm 1.

Algorithm 1 Search Algorithm for HCP

1: Input: a graph G
2: Search for a Hamiltonian extreme point among the extreme points of Hβ(G)
3: if search is successful then
4: output the Hamiltonian extreme point
5: else

6: claim that G is not Hamiltonian

We note that this is only a framework of an algorithm. In order to derive a practical algorithm, it still needs
to be specified how the search in Line 2 of Algorithm 1 is implemented. Depending on this implementation,
the resulting algorithm can have quite different properties. In particular, if we search by sampling extreme
points, we obtain a randomized search algorithm which, with a certain probability, will claim that the input
graph G is non-Hamiltonian, although in fact it contains a Hamiltonian cycle. Thus, one may try to alleviate
this error probability by designing a clever random search algorithm. The motivation of our work is to better
understand the properties of random walk based sampling methods in this context. Since each extreme point
can be identified with the set of its corresponding feasible bases. Hence, instead of sampling the extreme
points of the polytope Hβ(G) we can sample its feasible bases. This yields an efficient algorithm provided two
technical conditions are satisfied which can be informally stated as follows.

(1) There are sufficiently many extreme points (or feasible bases) corresponding to Hamiltonian cycles,
and

(2) The random walk used of sampling converges to the uniform distribution quickly enough.

The first condition ensures that the error probability is small. More precisely, we can bound the probability
that among t uniform samples there is none that corresponds to a Hamiltonian cycle. The second condition
allows us to bound the number of random walk steps to obtain an approximately uniform sample (see [18] for
more details and precise statements).

In order to establish the two conditions listed above for a random walk on the feasible bases of Hβ(G), it is
crucial to understand the structure of these feasible bases. The study of the structure of the extreme points of
Hβ(G) has been initiated in [10, 12]. However, these references did not consider the structure of the feasible
bases. In Section 3, we characterize feasible bases of the polytope Hβ(G), and describe their structural and
geometric properties.

3. Feasible bases of the polytope Hβ(G).

In this section, we consider feasible bases of the polytope Hβ(G). At the outset, we recall some basic
notation and definitions of polytopes, in general.

Definition 2. Let P ⊆ R
η be a polytope defined by the constraints Mx = v, x > 0, where M is a κ × η

matrix of rank κ 6 η, and v is an η×1 column vector. An extreme point (or vertex) of P is a point x ∈ P with
the property that M has a nonsingular κ × κ-submatrix MB such that the components of x corresponding
to columns not in MB are zero, and those components corresponding to columns in MB are given by M−1

B v.
For a given submatrix MB and the corresponding extreme point x, those components of x associated with
the columns of MB are called basic variables. The set of all κ basic variables is called a feasible basis. Two
distinct feasible bases are adjacent if and only if they have exactly κ− 1 common basic variables. An extreme
point is called degenerate if it has less than κ non-zero components. Otherwise, that is, if it has exactly κ
non-zero components, it is non-degenerate.

Remark 1. If all extreme points are non-degenerate, then there exists a one-to-one correspondence between
feasible bases and extreme points. Otherwise, some extreme points may be associated with more than one
feasible basis. Indeed, such degeneracy is generic in applications.
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(a) Hamiltonian extreme point
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(b) Non-Hamiltonian extreme point

Figure 2. Supports of a Hamiltonian and a non-Hamiltonian extreme point for the graph
in Figure 1(a).

The polytope Hβ(G), where β ∈ (0, 1), is generated by n+ 1 linearly independent constraints. Accordingly,
each feasible basis of Hβ(G) has n + 1 basic variables. As the columns of the constraint matrix A can be
identified with the arcs of G, characterizing the feasible bases of Hβ(G) is equivalent to characterizing the arc
sets B ⊆ E with |B| = n + 1 satisfying the following two conditions:

B1: The columns of the (n + 1)× (n + 1) matrix AB are linearly independent, where AB is constructed
by choosing those columns of A corresponding to B.

B2: The inequality (AB)−1
b > 0 is satisfied, which is equivalent to (8).

Henceforth, we use condition B1 and ‘the set B is linearly independent’, interchangeably.
We recall some results pertaining to the structure of extreme points of Hβ(G). For this, we present some

definitions.

Definition 3. Let x be an extreme point of Hβ(G). The support of x is defined to be the set of its non-
zero coordinates. Since the variables xij correspond to arcs of G, the support of x can be identified with a
subgraph of G, which we denote by S(G,x). More precisely, S(G,x) is the graph with node set V and arc
set {(i, j) ∈ E : xij > 0}. Since there is no danger of ambiguity, we use the term support of x to refer to the
graph S(G,x), the arc set of this graph, or the set of variables xij corresponding to these arcs.

According to Definition 1, an extreme point x is a Hamiltonian extreme point if and only if the support
S(G,x) is a Hamiltonian cycle in G. Furthermore, Ejov et al. [10] showed that, for a non-Hamiltonian extreme
point x, S(G,x) has a specific structure. In order to state their result, which is summarized in Theorem 2,
we need to define some important paths and cycles in G.

Definition 4 (Ejov et al. [10]). A cycle of the form 1→ v1 → · · · → vk → 1 with distinct nodes vi (i = 1, . . . , k)
and k < n− 1 is called a short cycle. A path of the form 1→ v1 → v2 → · · · → vk → vj with distinct nodes
vi (i = 1, . . . , k) and 1 6 j < k < n is called a noose path. The cycle vj → vj+1 → · · · → vk → vj is the
associated noose cycle.

Example 1. For n = 5, the arcs (1, 2), (2, 3) and (3, 1) form a short cycle, and the arcs (1, 2), (2, 3), (3, 4)
and (4, 2) form a noose path with the associated noose cycle {(2, 3), (3, 4), (4, 2)}.

Theorem 2 (Ejov et al. [10]). If x is a non-Hamiltonian extreme point of the polytope Hβ(G), then the
support S(G,x) is the union of a short cycle and a noose path. In particular, this implies that the support of a
non-Hamiltonian extreme point has a unique node of out-degree two, called the “splitting node”, and all other
nodes have out-degrees at most one.

Figure 2 illustrates the supports for a Hamiltonian and non-Hamiltonian extreme point of the polytope
Hβ(G), where G is the graph shown in Figure 1(a). More precisely, while the support shown in Figure 2(a)
corresponds to a Hamiltonian extreme point with positive components x12 = 1, x23 = β, x34 = β2, x45 = β3

and x51 = β4, the support in Figure 2(b) is associated with a non-Hamiltonian extreme point with positive
components x12 = 1 − β2, x14 = β2, x23 = β, x32 = β2, x45 = β3 and x51 = β4. In the latter graph, the arc
sets {(1, 4), (4, 5), (5, 1)}, {(1, 2), (2, 3), (3, 2)} and {(2, 3), (3, 2)} form the short cycle, noose path and noose
cycle, respectively. Furthermore, node 1 is the splitting node for this extreme point.

Motivated by Theorem 2, Eshragh and Filar [12] partitioned the set of non-Hamiltonian extreme points of
the polytope Hβ(G) into four types, based on their supports. More precisely, for a given non-Hamiltonian
extreme point, if in the corresponding support:
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1 j2 jp jk+1 jk+2 jn−3

jk jp+1 jn jn−1 jn−2

(a) Type 1

1 j2 jp jk+1 jq jq+1 jn−3

jk jp+1 jn jn−1 jn−2

(b) Type 2

1 j2 jq jq+1 jp jk+1 jn−3

jk jp+1

jn jn−1 jn−2

(c) Type 3

1 j2 jp jk+1 jq jq+1 jr−3

jk jp+1 jr jr−1 jr−2

jr+1 jn

(d) Type 4

Figure 3. Different types of non-Hamiltonian extreme points of the polytope Hβ(G)

Type 1: every node has in-degree at least one, the short cycle and the noose cycle are node-disjoint,
and there is one arc connecting the splitting node (which lies on the short cycle) to a node on the
noose cycle (Figure 3(a)).

Type 2: every node has in-degree at least one, the short cycle and the noose cycle are node-disjoint,
and they are linked by a path of length at least two, connecting the splitting node with a node on the
noose cycle (Figure 3(b)).

Type 3: every node has in-degree at least one, and the short cycle and noose cycle have at least one
node in common (Figure 3(c)).

Type 4: at least one node has degree zero (Figure 3(d)).

Remark 2. It follows from Theorem 2 that the support of each non-Hamiltonian extreme point of Type 4 can
be represented as a support of any of types 1–3 on less then n nodes or a short cycle on less than n nodes
with an extra arc (i, j), where nodes i and j are on the short cycle and node i comes after node j.

Definition 5. Let x be an extreme point of the polytope Hβ(G) with corresponding support S(G,x). A
feasible basis that contains the arc set of S(G,x) is called a Hamiltonian basis if x is a Hamiltonian extreme
point, and otherwise it is called a non-Hamiltonian basis.

Remark 3. Analogously, the set of feasible bases of the polytope Hβ(G) can be partitioned into five types:
Hamiltonian bases (namely, feasible bases of Type 0) and non-Hamiltonian bases of types 1–4, where a non-
Hamiltonian basis is Type i for i = 1, 2, 3, 4 if its corresponding extreme point is Type i.

Since the supports of extreme points of types 1–3 have exactly n + 1 elements, they are all non-degenerate
extreme points. This implies that each extreme point of these types has exactly one corresponding feasible basis
forming its support. However, as Hamiltonian and non-Hamiltonian Type 4 extreme points have, respectively,
exactly and at most n positive components, they are all degenerate extreme points and accordingly, they
may possess several corresponding feasible bases. Thus, the support S(G,x) associated with a Hamiltonian
or non-Hamiltonian Type 4 extreme point x does not reveal complete information about the feasible bases
corresponding to x. For example, Figure 4(a) shows S(K7,x), where K7 is the complete graph on seven nodes
and x is the non-Hamiltonian extreme point of Type 4 with positive coordinates x12 = 1, x23 = β3(1+β2)+β,
x32 = β2(1 +β2), x31 = β6. Clearly, in order to construct a feasible basis corresponding to this extreme point,
we should add four more appropriate arcs (not necessarily any four arbitrary arcs) to the support given in
Figure 4(a). If we try the four arcs (4, 5), (6, 5), (7, 6) and (7, 4), as in Figure 4(b), this fails as it would induce
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(a)

1 2

3

4

5

6

7

(b)

1 2

3

4

5

6

7

(c)

Figure 4. (a) Support of a non-Hamiltonian extreme point of Type 4 of Hβ(K7), and two
possible ways to add four arcs leading to a (b) linearly dependent set, and (c) a feasible basis.

linear dependency. However, if we complete the basis with arcs (3, 4), (5, 4), (6, 7) and (7, 6), as in Figure 4(c),
this results in a feasible basis of Type 4.

Thus, an important question raised here is which arcs can be added to the support of a degenerate extreme
point of the polytope Hβ(G) to construct a corresponding feasible basis? This question is addressed in
Proposition 1 and Theorem 3 for Hamiltonian and non-Hamiltonian Type 4 extreme points, respectively.

Proposition 1. A set B ⊆ E of size |B| = n + 1 is a Hamiltonian basis of the polytope Hβ(G) if and only if
B contains a Hamiltonian cycle.

Proof. If B is a Hamiltonian basis, it directly follows from Definitions 1 and 5 that it contains a Hamiltonian
cycle. So, we just need to show that for any Hamiltonian cycle in G with the arc set C ⊆ E and any arc
(i, j) ∈ E \ C, the set B = C ∪ {(i, j)} is a feasible basis for the polytope Hβ(G). Without loss of generality,
assume that

C = {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}

and fix any such B. In order to show that B is a feasible basis, we need to show that conditions B1 and B2

hold. Let AB denote the (n + 1) × (n + 1)-submatrix of A corresponding to B. If AB is invertible and x is
the vector whose coordinates corresponding to B are given by A−1

B b while all other coordinates are zero, then
it has been proved in [13, Lemma 3.2] that xk k+1 = βk−1 > 0 for k ∈ {1, 2, . . . , n − 1}, xn1 = βn−1 > 0,
and xkl = 0 for all (k, l) ∈ E \ C. So the non-negativity condition B2 is satisfied whenever the independence
condition B1 holds. Hence, we only need to prove that condition B1 holds, that is the set B is linearly
independent.

We prove this by contradiction. Let us assume that there exists a non-zero (n + 1)× 1 vector x satisfying
ABx = 0. In this proof, all indices 0 and n + 1 that appear in arc-indicating subscripts are equivalent to n
and 1, respectively; for example, xnn+1 = xn1 and x01 = xn1. Following constraints (5)–(7), replacing the
right-hand sides of (5) and (7) by 0, this set of linear equations is represented as follows:

xk k+1 − βxk−1 k = 0 for k ∈ V \ {i, j}, (9)

xi i+1 + xi j − βxi−1 i = 0, (10)

xj j+1 − β (xj−1 j + xi j) = 0, (11)

x12 + δi 1xi j = 0, (12)

where δi 1 is the Kronecker delta, which is equal to one if i = 1, otherwise zero. If xij = 0 then Equation (12)
implies that x12 = 0, and then xk k+1 = 0 for all k ∈ {1, 2, . . . , n} by induction on k, using (9), (10) and (11).
Hence, our assumption x 6= 0 implies that xi j 6= 0. Therefore, without loss of generality, we assume xi j = 1.
As illustrated in Figure 5, there are four possible cases for the arc (i, j) discussed below. We show that in all
four cases the non-zero assumption on x is violated, implying that the set B is linearly independent.

Case 1: i = 1, 3 6 j 6 n. From Equation (12) we obtain x12 = −1, and then by Equation (9) and
induction on k we have xk k+1 = −βk−1 for k = 1, . . . , j − 1. So, Equation (11) simplifies to

xj j+1 − β
(

−βj−2 + 1
)

= 0,
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Figure 5. Illustration for the four cases discussed in the proof of Proposition 1.

implying that xj j+1 = β−βj−1. Substituting this value into Equation (9), and proceeding by induction
on k, we have

xk k+1 = βk−j+1 − βk−1 for k = j, j + 1, . . . , n.

Hence, the left-hand side of Equation (10) is

x12 + x1j − βxn1 = −1 + 1− β
(

βn−j+1 − βn−1
)

< 0.

In particular, ABx 6= 0, which is the required contradiction.
Case 2: j = 1, 2 6 i 6 n− 1. From Equation (12), we obtain x12 = 0. As in Case 1, we have

xk k+1 =

{

0 for k = 1, 2, . . . , i− 1,

−βk−i for k = i, i + 1, . . . , n.

Hence, the left-hand side of Equation (11) is

x12 − β (xn1 + xi1) = 0− β
(

−βn−i + 1
)

< 0.

In particular, ABx 6= 0, which is the required contradiction.
Case 3: 2 6 i < j − 1 6 n− 1. As in Case 2, we have

xk k+1 =











0 for k = 1, 2, . . . , i− 1,

−βk−i for k = i, i + 1, . . . , j − 1,

βk−j+1 − βk−i for k = j, j + 1, . . . , n.
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Figure 6. Three Hamiltonian bases for the graph in Figure 1(a)
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Figure 7. Balanced oriented paths

Hence, the left-hand side of Equation (9) for k = 1 is

x12 − βxn1 = 0− β
(

βn−j+1 − βn−i
)

< 0.

In particular, ABx 6= 0, which is the required contradiction.
Case 4: 2 6 j < i 6 n. As in Case 2, we have

xk k+1 =











0 for k = 1, 2, . . . , j − 1,

βk−j+1 for k = j, j + 1, . . . , i− 1,

βk−j+1 − βk−i for k = i, i + 1, . . . , n.

Hence, the left-hand side of Equation (9) for k = 1 is

x12 − βxn1 = 0− β
(

βn−j+1 − βn−i
)

> 0.

In particular, ABx 6= 0, which is the required contradiction. �

Corollary 1. Every Hamiltonian extreme point of Hβ(G) corresponds to |E| −n Hamiltonian bases, and any
two of these bases are connected by a single variable exchange.

Proof. Proposition 1 implies that a Hamiltonian basis of Hβ(G) is obtained by adding an arbitrary arc to the
arc set of any Hamiltonian cycle in G. �

For example, Figure 6 illustrates three different Hamiltonian bases of the polytope Hβ(G) for the input
graph G given in Figure 1(a). All those three Hamiltonian bases correspond to the Hamiltonian extreme point
with the support displayed in Figure 2(a).

In the remainder of this section, we characterize the non-Hamiltonian bases of the polytope Hβ(G). In
order to formulate the necessary and sufficient conditions on an arc set B ⊆ E to be a non-Hamiltonian basis,
we need to introduce the following concept, and develop some preliminary results presented in lemmas 1–4.

Definition 6. Let P = {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}}, where vi ∈ V for i = 0, . . . , k, be an undirected

path (or cycle if vk = v0) in the graph G. An oriented path (or cycle) of P is denoted by
−→
P and defined by

−→
P = {(u1, w1), (u2, w2), . . . , (uk, wk)},

where (ui, wi) ∈ {(vi−1, vi), (vi, vi−1)} for i = 1, . . . , k. We call the arc (ui, wi) a forward arc if (ui, wi) =

(vi−1, vi) and a backward arc if (ui, wi) = (vi, vi−1). For the special cases where
−→
P is a path of length one or

a cycle of length two, that is
−→
P = {(u1, w1)} or {(u1, w1), (w1, u1)}, we use the convention that all arcs are

forward arcs. The defect of an oriented path (or cycle)
−→
P is denoted by ∆(

−→
P ) and defined to be the number

of forward arcs minus the number of backward arcs in
−→
P . We say that

−→
P is balanced if its defect is zero.
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Figures 7(a) and 7(b) depict a balanced oriented cycle and path, respectively. While the solid arcs indicate
forward arcs, the dashed arcs are backward arcs.

Remark 4. Any balanced oriented path (or cycle) contains an even number of arcs, where half of them are
forward arcs and half are backward arcs. Obviously, a Hamiltonian cycle, short cycle, noose path and noose
cycle are non-balanced and all their arcs are forward arcs.

Lemma 1. Let x = (xij)|E|×1, where (i, j) ∈ E, be a real-valued vector whose support is an oriented cycle
−→
C ⊆ E that does not contain node 1. Then Ax = 0 if and only if the following three conditions are satisfied:

(i) xij = −xik if node i has out-degree 2 in
−→
C and (i, j), (i, k) ∈

−→
C ;

(ii) xji = −xki if node i has in-degree 2 in
−→
C and (j, i), (k, i) ∈

−→
C ;

(iii) xij = βxki if node i has in- and out-degree 1 in
−→
C and (i, j), (k, i) ∈

−→
C .

Proof. This is an immediate consequence of constraint (6). �

Lemma 2. Let
−→
C ⊆ E be an oriented cycle not containing node 1. The set of columns of A corresponding to

the arcs in
−→
C is linearly dependent if and only if

−→
C is balanced.

Proof. We first prove the ‘only if’ statement by showing that if the set of columns of A corresponding to
−→
C

is linearly dependent, then
−→
C is a balanced oriented cycle. As all results in this proof are derived in ‘if and

only if’ condition, the converse, that is the ‘if’ statement, can easily be shown by following the ‘only if’ proof
backward. Let A−→

C
denote the (n+ 1)× k submatrix constructed by choosing the columns of A corresponding

to arcs in the oriented cycle
−→
C = {e1, e2, . . . , ek}, where el = (il, jl) ∈ E for l = 1, . . . , k and k < n. Define

−→
P l = {e1, e2, . . . , el} as the oriented subpath of the oriented cycle

−→
C for l = 1, . . . , k. Let i∗ be the common

node of arcs e1 and ek, and σl be the number of nodes in
−→
P l having in- or out-degree 2. For l = k, we do

not consider i∗ in the calculation of σk. From our linear dependency assumption, we know that there exists

a non-zero k × 1 vector x such that A−→
C
x = 0. Lemma 1 prescribes that xiljl 6= 0 for all (il, jl) ∈

−→
C . So,

without loss of generality, we can re-scale x and define

xi1j1 =

{

1 if i1 = i∗ (i.e., e1 is a forward arc),

β−1 if j1 = i∗ (i.e., e1 is a backward arc).
(13)

By applying Lemma 1 and induction on l, we can show the following equality for the component of vector x

corresponding to the last arc in
−→
P l, for l = 1, . . . , k:

xiljl =

{

(−1)σlβ∆(
−→
P l)−1 if el = (il, jl) is a forward arc,

(−1)σlβ∆(
−→
P l) if el = (il, jl) is a backward arc.

(14)

As the number of nodes with in- or out-degree 2 in the oriented cycle
−→
C is even, i∗ has in- or out-degree 2, if

and only if σk is odd. For node i∗ in
−→
P k (which is identical to

−→
C ), we have the following four possible cases:

Case 1: i1 = ik = i∗. In this case, e1 = (i∗, j1) is a forward arc and ek = (i∗, jk) is a backward arc. As
the out-degree of node i∗ is 2, σk is an odd number. Consequently, from equations (13) and (14) we

have xi∗j1 = 1 and xi∗jk = −β∆(
−→
C ), respectively. However, Lemma 1 prescribes that xi∗j1 = −xi∗jk .

Hence, in this case, we must have ∆(
−→
C ) = 0.

Case 2: i1 = jk = i∗. In this case, both e1 = (i∗, j1) and ek = (ik, i
∗) are forward arcs. As the in- and

out-degree of node i∗ are 1, σk is an even number. Consequently, from equations (13) and (14) we

have xi∗j1 = 1 and xiki∗ = β∆(
−→
C )−1, respectively. However, Lemma 1 prescribes that xi∗j1 = βxiki∗ .

Hence, in this case, we must have ∆(
−→
C ) = 0.

Case 3: j1 = ik = i∗. In this case, both e1 = (i1, i
∗) and ek = (i∗, jk) are backward arcs. As the in-

and out-degree of node i∗ is 1, σk is an even number. Consequently, from equations (13) and (14) we

have xi1i∗ = β−1 and xi∗jk = β∆(
−→
C ), respectively. However, Lemma 1 prescribes that xi∗jk = βxi1i∗ .

Hence, in this case, we must have ∆(
−→
C ) = 0.
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Case 4: j1 = jk = i∗. In this case, e1 = (i1, i
∗) is a backward arc and ek = (ik, i

∗) is a forward arc. As
the in-degree of node i∗ is 2, σk is an odd number. Consequently, from equations (13) and (14) we have

xi1i∗ = β−1 and xiki∗ = −β∆(
−→
C )−1, respectively. However, Lemma 1 prescribes that xi1i∗ = −xiki∗ .

Hence, in this case, we must have ∆(
−→
C ) = 0.

Thus,
−→
C is a balanced oriented cycle. �

Lemma 3. If H = (W,B), where W ⊆ V \ {1} and B ⊆ E, is a connected subgraph of G with |B| = |W |,
then the set of columns of A corresponding to arcs in B is linearly dependent if and only if the unique oriented
cycle in B is balanced.

Proof. If the oriented cycle in B is balanced then B is linearly dependent by Lemma 2. For the converse,
suppose that B is linearly dependent and let B′ ⊆ B be a minimal dependent subset. This implies that
there exists a nonzero vector x with AB′x = 0, where AB′ is a submatrix constructed by the columns of A
corresponding to B′, such that for every arc (i, j) ∈ B′, the component xij 6= 0. If the subgraph H ′ = (W,B′)
had a node i of degree 1, then constraint (6) for this node would imply that xij = 0 (if (i, j) ∈ B′) or xji = 0
(if (j, i) ∈ B′). Since this contradicts the minimality of B′, we conclude that B′ is exactly the arc set of the
oriented cycle in B. Lemma 2 prescribes that B′ is balanced. �

In Lemma 4 and Theorem 3 we use the notation H = (V,B), where B ⊆ E with |B| = n+1, is a subgraph of
the graph G with connected components H1, H2, . . . , Hm. Moreover, Hk = (Vk, Bk), where Vk and Bk denote
the set of nodes and arcs comprising the connected component Hk for k = 1, . . . ,m, respectively. Without loss
of generality, we assume that 1 ∈ V1. Let ρ(H1) denote a subgraph of H1 constructed by repeatedly removing
all nodes in H1 with degree equal to 1. We use the notation Vρ and Bρ to denote the node set and arc set of
the graph ρ(H1). It should be noted that the concept of constructing the subgraph ρ(H1) is analogous to the
2-core of the graph H1 (see, for example [5] or [21]).

Lemma 4. Consider the subgraph H = (V,B) with connected components H1, . . . , Hm. Let AB be a submatrix
of A corresponding to the arcs of B. If AB is an invertible matrix and x = A−1

B b, then

(i) |Bk| =

{

|V1|+ 1 for k = 1,

|Vk| for k = 2, . . . ,m;

(ii) xij = 0 for each (i, j) ∈ B \Bρ.

Proof. (i) Since AB is an invertible (|V | + 1) × |B| square matrix, rank(AB) = |V | + 1 = |B| = n + 1.
Moreover, it follows from constraints (5)–(7) that AB has a block structure, with non-overlapping blocks
AB1

, . . . , ABm
such that AB1

is a (|V1| + 1) × |B1| matrix corresponding to the nodes and arcs in V1

and B1, respectively, and ABk
is a |Vk| × |Bk| matrix corresponding to the nodes and arcs in Vk and

Bk, respectively, for k = 2, . . . ,m. Since there are no arcs between distinct components Hi and Hj

for i, j ∈ {1, . . . ,m} and i 6= j, and rank(AB) = |V | + 1, we should have rank(AB1
) = |V1| + 1 and

rank(ABk
) = |Vk|, for k = 2, . . . ,m. Similarly, as rank(AB)|B|, we should also have rank(ABk

) = ABk

equal to |Bk|, for k = 1, . . . ,m. Thus,

|Bk| =

{

|V1|+ 1 for k = 1,

|Vk| for k = 2, . . . ,m.

(ii) Let B′ ⊆ B be the support of x. We define x
k as the restriction of x to the coordinates in Bk for

k = 2, . . . ,m. Constraint (6) implies that ABk
x
k = 0, and since ABk

has full column rank, we obtain
x
k = 0 for k = 2, . . . ,m. Hence, B′ ⊆ B1. Moreover, if the subgraph H ′ = (V1, B

′) has a node i of degree
1, then constraint (6) for node i implies that xij = 0 (if (i, j) ∈ B′) or xji = 0 (if (j, i) ∈ B′), which
contradicts the definition of B′. Thus, all nodes in the subgraph H ′ have degree at least 2 implying that
B′ ⊆ Bρ. �

Theorem 3. Consider a subgraph H = (V,B), with connected components H1, . . . , Hm, m ∈ {1, . . . , ⌊(n −
1)/2⌋}. The arc set B is a non-Hamiltonian basis of the polytope Hβ(G) if and only if the following three
conditions are satisfied:
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Figure 8. Three non-Hamiltonian bases of Type 4 corresponding to the support in Figure 4(a)

(i) |Bk| =

{

|V1|+ 1 for k = 1,

|Vk| for k = 2, . . . ,m;

(ii) If m > 1, Hk does not contain a balanced oriented cycle, for k = 2, . . . ,m;
(iii) The subgraph ρ(H1) is the union of a short cycle and a noose path.

Proof. Let B be a non-Hamiltonian basis of the polytope Hβ(G) corresponding to an extreme point x, and
let AB be the associated submatrix of A. Since B is a basis, AB is invertible. Consequently, conditions (i)
and (ii) follow from lemmas 4 and 3, respectively. Now, consider the subgraph ρ(H1). By Lemma 4, we know
that the support S(G,x) is a subgraph of ρ(H1). Moreover, as we remove an equal number of nodes and arcs
to construct ρ(H1), condition (i) implies that |Bρ| = |Vρ|+ 1. It follows that the support S(G,x) is identical
to the graph ρ(H1). Hence, by Theorem 2, we can conclude condition (iii), that is ρ(H1) is the union of a
short cycle and a noose path.

Conversely, suppose that conditions (i)–(iii) are satisfied. In order to prove that B is a non-Hamiltonian
basis, we should only show that conditions B1 and B2 hold, implying that B is a feasible basis. Then,
condition (iii) with Theorem 2 prescribe that B is a non-Hamiltonian basis. If ABk

denotes a submatrix of A
corresponding to the node and arc sets Vk and Bk, respectively, for k = 1, . . . ,m, condition (i) implies that each
ABk

is a square matrix and so AB has a block diagonal structure. Hence, we have det(AB) = Πm
k=1 det(ABk

)
and AB is invertible if ABk

is invertible for all k = 1, . . . ,m. Consequently, to show that AB is invertible,
we need to show that each submatrix ABk

is invertible. Lemma 3 with conditions (i)–(ii) imply that ABk

is invertible for k = 2, . . . ,m. It remains to show that AB1
is invertible as well. Let λ ∈ R

|B1| be a vector
satisfying AB1

λ = 0. As in the proof of Lemma 3, we show that λij = 0 for all (i, j) ∈ B1 \ Bρ. From
Theorem 2 and condition (iii), the columns of AB1

corresponding to arcs in Bρ are linearly independent; hence
λij = 0 for for all (i, j) ∈ Bρ. Consequently, we have λ = 0, implying that the columns of AB1

are linearly
independent. So, condition B1 holds. Finally, Theorem 2 and condition (iii) confirm that condition B2 holds
as well. �

Remark 5. Theorem 3 implies that the arc set of a spanning subgraph H of G is a non-Hamiltonian basis if
and only if (i) H has exactly n + 1 arcs, (ii) every node in H has positive degree, (iii) H does not contain a
balanced oriented cycle, and (iv) H contains a short cycle and a noose path.

Remark 6. Theorem 3 describes the structure of all non-Hamiltonian bases of types 1–4. However, as the
supports of non-degenerate non-Hamiltonian extreme points of types 1–3 have exactly n + 1 arcs, for their
corresponding feasible bases, we have H = H1 and the result of Theorem 3 will be consistent with Theorem 2.
So, the main contribution of Theorem 3 can be regarded for the structure of degenerate non-Hamiltonian bases
of Type 4, which is utilized in Section 4 to derive their expected prevalence in the polytope Hβ(G) when the
input graph G is random.

As Figure 4(b) contains a balanced oriented cycle
−→
C = {(4, 5), (6, 5), (7, 6), (7, 4)}, it is now readily seen

that it is not associated with a feasible basis of the polytope Hβ(K7). However, as Figure 4(c) satisfies all
conditions provided in Theorem 3, it corresponds to a non-Hamiltonian basis of Type 4. Figure 8 shows three
more non-Hamiltonian bases corresponding to the support displayed in Figure 4(a).
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4. Expected numbers of feasible bases of Hβ-polytope for random graphs.

As discussed in Section 2, the correspondence between the sets of Hamiltonian cycles in the graph G and
feasible bases of the polytope Hβ(G) can be exploited to develop an algorithm that searches for Hamiltonian
cycles. One key issue influencing the efficiency of such an algorithm is the existence of a sufficiently large
number of Hamiltonian bases. More precisely, we require the ratio of the number of Hamiltonian bases to non-
Hamiltonian bases to be bounded below by 1/h(n), where h(n) is a polynomial in n. Then for a Hamiltonian
input graph G the probability of not finding a Hamiltonian basis in the first αh(n) iterations would be expected
to decay rapidly with α if the search algorithm sampled feasible bases uniformly at random. For instance,
if Algorithm 1 were modified to search on feasible bases (instead of extreme points), according to a uniform
distribution, then we could expect to find a Hamiltonian cycle, with very high probability, in polynomial time.
Thus it is important to investigate the prevalence of Hamiltonian bases in Hβ(G).

In this section, we exploit the structural results from Section 3 to derive the expected prevalence of each
of the five types of feasible bases of the polytope Hβ(G) where G is a binomial random graph and show that
the majority of these are non-Hamiltonian bases of Type 4. Thus, the expected number of Hamiltonian bases
of this polytope is exponentially small, when compared to the expected number of non-Hamiltonian bases
of Type 4. Fortunately, in [12], it was shown that these undesirable feasible bases can be eliminated by the
addition of 2n− 2 lower and upper bound constraints.

The following definition is needed for the ensuing discussion. For an introduction to the theory of general
random graphs, we refer the interested reader to Bollobás [6].

Definition 7. For a positive integer n and a fixed probability p ∈ [0, 1], the directed binomial random graph
on n nodes, denoted by Gn,p, is a random directed graph on n nodes where each ordered pair of distinct nodes
is, independently, connected by an arc with probability p.

As discussed in Section 3, the feasible bases of the polytope Hβ(G) can be identified by certain subgraphs
of G on n nodes and n+ 1 arcs. For k = 0, 1, 2, 3, 4, let fk(n) denote the number of subgraphs of the complete
graph Kn corresponding to the feasible bases of Type k of the polytope Hβ(Kn). Recall that the feasible bases
of Type 0 are referred as Hamiltonian bases. Label all fk(n) feasible bases of Type k of the polytope Hβ(Kn),
1, . . . , fk(n). Define the binary random variable Ii(k) that takes the value of one, if the ith feasible basis of
Type k of the polytope Hβ(Kn) appears in the random polytope Hβ(Gn,p), and otherwise zero. Clearly,

E (Ii(k)) = pn+1,

where E denotes the expected value. Although Ii(k) are dependent random variables, as the expectation is a
linear operator, we have

E





fk(n)
∑

i=1

Ii(k)



 =

fk(n)
∑

i=1

E (Ii(k)) = fk(n)pn+1. (15)

Equation (15) implies that the expected number of feasible bases of Type k of the polytope Hβ(Gn,p) equals
fk(n)pn+1 for k = 0, . . . , 4. In particular, the ratio between the expected number of Hamiltonian bases and
the expected total number of feasible bases in the random polytope Hβ(Gn,p) is independent of p and equals
f0(n)/[f0(n) + · · · + f4(n)]. Theorem 4 provides the expected number of feasible bases of types 0–3 as well
as a lower bound on the expected number of feasible bases of Type 4 by determining the value of fk(n) for
k = 0, . . . , 3 and finding a lower bound on f4(n).

Theorem 4. Consider the binomial random graph Gn,p and the corresponding polytope Hβ(Gn,p). The ex-
pected number of

(i) Hamiltonian bases is (n− 2)n!pn+1;

(ii) non-Hamiltonian bases of Type 1 is
1

2
(n− 3)n!pn+1;

(iii) non-Hamiltonian bases of Type 2 is
1

6
(n− 4)(n− 3)(n + 1)(n− 1)!pn+1;



HAMILTONIAN CYCLES AND SUBSETS OF DISCOUNTED OCCUPATIONAL MEASURES 15

(iv) non-Hamiltonian bases of Type 3 is
1

6
(n− 2)(n− 1)n!pn+1;

(v) non-Hamiltonian bases of Type 4 is at least (n− 1)(n− 2)(n− 3)n−52n−4pn+1.

Proof.

(i) The complete graph Kn possesses n(n− 1) arcs and (n− 1)! Hamiltonian cycles. By Proposition 1 and
Corollary 1, for each Hamiltonian cycle, any of the n(n − 2) remaining arcs can be added to form a
feasible basis. It follows that f0(n) = (n− 2)n!.

(ii) A non-Hamiltonian basis of Type 1 consists of a short cycle of length k ∈ {2, 3, . . . , n− 2}, a noose cycle
of length n− k, and an arc joining them. For a fixed k, there are
•
(

n−1
k−1

)

(k − 1)! ways to construct a short cycle;

• (n− k − 1)! ways to construct a noose cycle from the remaining nodes, after fixing the short cycle;

•
(

k
1

)(

n−k
1

)

options to choose a node from the short cycle and the noose cycle to connect them together.
Consequently,

f1(n) =

n−2
∑

k=2

(n− 1)!

(n− k)!
(n− k − 1)!k(n− k) = (n− 1)!

n−2
∑

k=2

k =
1

2
(n− 3)n!.

(iii) A non-Hamiltonian basis of Type 2 consists of a short cycle of length k ∈ {2, 3, . . . , n− 3}, a noose cycle
of length l ∈ {2, 3, . . . , n− k − 1}, and a path of length n− (k + l) + 1 joining them. For fixed k and l,
there are
•
(

n−1
k−1

)

(k − 1)! ways to construct a short cycle;

•
(

n−k
l

)

(l − 1)! ways to construct a noose cycle, after fixing the short cycle;
• (n− k − l)! ways to permute the remaining nodes to construct the connecting path from the short

cycle to the noose cycle;
•
(

k
1

)(

l
1

)

options to choose a node from the short cycle and a node from the noose cycle to connect
them through the path constructed in (iii).

Consequently,

f2(n) =
n−3
∑

k=2

n−k−1
∑

l=2

(n− 1)!

(n− k)!
.

(n− k)!

l(n− k − l)!
(n− k − l)!kl =

n−3
∑

k=2

n−k−1
∑

l=2

k(n− 1)! = (n− 1)!
n−3
∑

k=2

(n− k − 2)k

= (n− 1)!

(

(n− 2)

n−3
∑

k=2

k −
n−3
∑

k=2

k2

)

=
1

6
(n− 4)(n− 3)(n + 1)(n− 1)!.

(iv) For a non-Hamiltonian basis of Type 3 with a short cycle of length k ∈ {2, 3, . . . , n− 1}, there are
•
(

n−1
k−1

)

(k − 1)! ways to construct a short cycle;

• (n− k)! ways to permute the remaining nodes, after fixing the short cycle;

•
(

k−1
1

)

options to choose a splitting node on the short cycle;

•
(

l
1

)

options to choose a node with in-degree 2 on the short cycle, where l is the location of the
splitting node on the short cycle starting from node 1.

Consequently,

f3(n) =

n−1
∑

k=2

k−1
∑

l=1

(n− 1)!

(n− k)!
(n− k)!l = (n− 1)!

n−1
∑

k=2

k(k − 1)

2
=

1

6
(n− 2)(n− 1)n!.

(v) In order to establish a lower bound for f4(n), following Remark 2, we bound the number of feasible bases
of Type 3 corresponding to non-Hamiltonian extreme point x such that their supports have only three
nodes including one short cycle and one noose cycle, each of length 2. If x is non-Hamiltonian extreme
point of the polytope Hβ(Kn) with this structure, there are

(

n−1
1

)(

n−2
1

)

= (n−1)(n−2) ways to construct

the support S(Kn,x). Any undirected tree spanning the remaining n− 3 nodes can be oriented in 2n−4

ways, and for each of these orientations there is always an additional arc that can be added without
creating a balanced oriented cycle. As a consequence of Theorem 3 and Remark 5, the result is a feasible
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basis of Type 4 corresponding to x. By Cayley’s formula (see, for instance, [1, Chapter 30]), the number
of spanning trees on n− 3 labeled nodes is equal to (n− 3)n−5. Thus, we have

f4(n) > (n− 1)(n− 2)(n− 3)n−52n−4. �

Corollary 2. In the polytope Hβ(Gn,p), for sufficiently large n, we have

(i)

E (Number of feasible bases of Type 4)

E (Total number of feasible bases)
> 1−

n11/2

en2n−9
;

(ii)

E (Number of Hamiltonian bases)

E (Total number of feasible bases)
6

n9/2

en−12n−9
.

Proof.

(i) The quotient on the left-hand side is

f4(n)

f0(n) + f1(n) + f2(n) + f3(n) + f4(n)
= 1−

f0(n) + f1(n) + f2(n) + f3(n)

f0(n) + f1(n) + f2(n) + f3(n) + f4(n)

> 1−
f0(n) + f1(n) + f2(n) + f3(n)

f4(n)
.

Using Stirling’s formula to bound the factorials in parts (i)–(iv) of Theorem 4,

f0(n) + f1(n) + f2(n) + f3(n) =
1

3
(n3 − 7n + 6)(n− 1)! 6

1

3
n2n! 6 nn+5/2e−n.

Furthermore, for sufficiently large n, we have

f4(n) > (n− 1)(n− 2)(n− 3)n−52n−4 = nn−3

(

n− 1

n

)(

n− 2

n

)(

n− 3

n

)n−5

2n−4

= nn−32n−4

(

1−
1

n

)(

1−
2

n

)

(

(

1−
3

n

)n/3
)3(n−5)/n

> nn−32n−4

(

1−
2

n

)2(
1

e

)3

> nn−32n−4

(

27

32

)(

1

3

)3

= nn−32n−9. (16)

Thus, we obtain

f4(n)

f0(n) + f1(n) + f2(n) + f3(n) + f4(n)
> 1−

nn+5/2e−n

nn−32n−9
= 1−

n11/2

en2n−9
.

(ii) From part (i) of Theorem 4 and Inequality (16) as well as utilizing Stirling’s formula, the left-hand side
is bounded above as follows:

f0(n)

f0(n) + f1(n) + f2(n) + f3(n) + f4(n)
6

f0(n)

f4(n)
6

(n− 2)n!

nn−32n−9
6

n9/2

en−12n−9
. �

Remark 7. Corollary 2 shows that even the expected number of feasible bases of Type 4 corresponding to a
portion of supports on three nodes is exponentially larger than the expected number of feasible bases of types
0, 1, 2 and 3 all together. Thus, non-Hamiltonian bases of Type 4 can make up the majority of feasible bases
of the polytope Hβ(G). This result is supported numerically in Section 6.
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5. Reducing the feasible region.

Theorem 4 and Corollary 2 show that the main obstacle to finding a Hamiltonian basis of the polytope
Hβ(G) may lie in the abundance of non-Hamiltonian bases of Type 4. As indicated by Corollary 2 , as the
number of nodes of the graph G, n, increases, the ratio between the numbers of non-Hamiltonian bases of
Type 4 and all feasible bases of the polytope Hβ(G) could tend to one exponentially fast. It is therefore of
interest to modify the polytope Hβ(G) in such a way that all non-Hamiltonian bases of Type 4 are eliminated,
while all Hamiltonian feasible bases are preserved. To this end, Eshragh and Filar [12] added 2(n− 1) of the
so-called wedge constraints (17), to Hβ(G), thereby defining a modified polytope WHβ(G) with the following
constraints set:

x ∈ Hβ(G),

βn−1
6

∑

j∈N+(i)

xij 6 β for all i ∈ V \ {1}. (17)

In [12] it was shown that, when β is sufficiently close to one, the wedge constraints (17) excise what is, typically,
the majority of non-Hamiltonian bases. This result is summarized in Theorem 5.

Theorem 5 (Eshragh and Filar [12]). Consider the graph G = (V,E) on n nodes and the corresponding

polytopes Hβ(G) andWHβ(G). For values of β ∈
(

(1− 1
n−2 )

1
n−2 , 1

)

, the only possible common extreme points

of polytopes Hβ(G) and WHβ(G) are the Hamiltonian extreme points and the non-Hamiltonian extreme points
of Type 1.

Our results in Section 4 show that, for a given binomial random graph, the majority of non-Hamiltonian
bases are of Type 4. Since the result of Theorem 5 can clearly be extended from extreme points to feasible
bases, removing non-Hamiltonian extreme points of Type 4 may be interpreted as the efficiency of the wedge
constraints. However, the wedge constraints may also add new extreme points. In order to fully investigate
the efficiency of the wedge constraints, we need to determine the structure and prevalence of feasible bases
of these new extreme points of the polytope WHβ(G). Analogous to Eshragh et al. [13], we introduce the
concept of quasi-Hamiltonian bases for WHβ(G) as follows.

Definition 8. Let x = (xij) ∈ R
|E| be an extreme point of WHβ(G). The extreme point x is called quasi-

Hamiltonian if any path i1 → i2 → · · · → in → in+1, where ik+1 ∈ arg maxj∈N+(ik){xikj} for k = 1, . . . , n
is a Hamiltonian cycle in G. In this case, any feasible basis corresponding to x is called a quasi-Hamiltonian
basis.

As an example, consider the following quasi-Hamiltonian extreme point of the polytope WHβ(K6) for
β = 0.999:

x12 = 1.00000, x26 = 0.999000, x34 = 0.994013; x36 = 0.000997, x45 = 0.995010, x51 = 0.995010,

x54 = 0.001993, x63 = 0.996006, x65 = 0.00299101,

and all the other xij are zero. We can easily see that this extreme point corresponds to the Hamiltonian cycle
1→ 2→ 6→ 3→ 4→ 5→ 1. Any feasible basis of the polytope WHβ(K6) corresponding to this particular
extreme point is called a quasi-Hamiltonian basis.

Remark 8. Evidently, every Hamiltonian extreme point in the polytope Hβ(G) is also a quasi-Hamiltonian
extreme point in the polytope WHβ(G). Furthermore, quasi-Hamiltonian bases increase the pool of desirable
feasible bases.

In the next section, we develop two algorithms to study the effectiveness of the wedge constraints in
removing non-Hamiltonian bases and the role of the discount parameter β. We present promising numerical
results regarding the efficiency of the modified polytopeWHβ(G) overHβ(G), in the sense that the prevalence
of quasi-Hamiltonian bases among all feasible bases of WHβ(G) appears much greater than the prevalence of
Hamiltonian bases among all feasible bases of Hβ(G). This means that, based on our numerical evidence, the
wedge constraints do not add an excessive number of non-Hamiltonian bases.
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Table 1. No. of steps required to find one
Hamiltonian cycle

Random Graph No. of Steps

Ḡ10,3/10 6
Ḡ20,3/20 454
Ḡ30,3/30 1358
Ḡ40,3/40 5714
Ḡ50,3/50 4392
Ḡ60,3/60 6230
Ḡ70,3/70 6387

6. Computational results.

The polytopes Hβ(G) and WHβ(G) introduced in sections 2 and 5, respectively, can be used as the basis
of a search algorithm for HCP (Algorithm 1). As indicated earlier, one key improvement to enhance the
efficiency of such an algorithm would be to increase the ratio of Hamiltonian bases to all feasible bases in the
polytopes. Corollary 2 indicates that, on average, the vast majority of feasible bases of the polytope Hβ(Gn,p)
are non-Hamiltonian bases of Type 4 and therefore the number of Hamiltonian bases is not sufficiently large
for our purposes. Theorem 5 show that the wedge constraints cut off three types of non-Hamiltonian extreme
points of Hβ(G). However, they may also introduce a number of additional extreme points and consequently
new feasible bases to the polytope WHβ(G). In order to compare the polytopes Hβ(G) and WHβ(G), we
develop two random walk algorithms on feasible bases of the two polytopes.

A random walk algorithm to find one Hamiltonian cycle is Algorithm 2. More precisely, this algorithm runs
a simple uniform random walk on the feasible bases of the polytope WHβ(G) for an input Hamiltonian graph
G and stops when it finds a quasi-Hamiltonian basis and reports the total number of steps to reach that basis.

Algorithm 2

1: Input: A graph G and a positive integer MaxStep
2: Step ← 0
3: Let B be an initial feasible basis for the polytope WHβ(G)
4: while B is not quasi-Hamiltonian do

5: Step ← Step+1
6: B ← a basis chosen uniformly at random from the feasible bases adjacent to B

7: Output: Step (the number of steps before finding a quasi-Hamiltonian feasible basis)

The random walk step in Line 6 of Algorithm 2 is implemented as follows. The bases adjacent to B are given
by pairs of a leaving variable and an entering variable chosen from the set of basic variables and non-basic
variables, respectively. Each of these pairs is checked for feasibility, and the feasible ones are listed together
as the set of feasible bases adjacent to B. Finally, one of the adjacent feasible bases is chosen uniformly at
random.

We implemented Algorithm 2 in Matlab R2015b and tested it on a range of Hamiltonian binomial random
graphs Ḡn,p. The latter are merely binomial random graphs Gn,p augmented by insertion (if necessary) of
arcs corresponding to one randomly generated Hamiltonian cycle, thereby ensuring the Hamiltonicity of Ḡn,p.
In Table 1, we report the performance of Algorithm 2 on several of these graphs with p = 3/n, n = 10, . . . , 70
and β = 0.999.

It is important to note the slow growth of the required iterations with increases in n. For NP-complete
problems, such as HCP, doubling or tripling n would normally dramatically increase the number of iterations.
Furthermore, we emphasize the crucial role of the wedge constraint and the parameter β.



HAMILTONIAN CYCLES AND SUBSETS OF DISCOUNTED OCCUPATIONAL MEASURES 19

We modified Algorithm 2 slightly by replacing WHβ(G) and quasi-Hamiltonian with Hβ(G) and Hamil-
tonian, respectively, and running it on the same Ḡn,p graphs reported in Table 1. In all cases, we failed to find
Hamiltonian cycles in 1, 000, 000 steps. Furthermore, all one million of the non-Hamiltonian basis identified
in the process were of Type 4. This is consistent with Corollary 2 and Remark 7.

Another interesting feature of the polytope WHβ(G) is the role played by the parameter β. Theorem 5
implies that the wedge constraints can be efficient when β is sufficiently close to one. In order to test this
result numerically, we implemented Algorithm 2 on Ḡ30,3/30 for various values of β. We were interested in
determining how increases in the parameter β would affect the search for quasi-Hamiltonian bases. The results
are given in Table 2. The first column contains the chosen values of β, while the second column shows the
number of steps that the algorithm took to find a quasi-Hamiltonian basis. When Algorithm 2 did not find
a quasi-Hamiltonian basis in 30, 000 steps, we reported ‘fail’. Table 2 demonstrates the crucial role of β in
the polytope WHβ(G) where fewer steps are required to find a quasi-Hamiltonian basis for larger values of β.
These numerical experiments are aligned with theoretical results stated in Theorem 5.

Remark 9. Analogous to the proof of Theorem 4.3 in [12], we can show that if a given graph G is Hamiltonian,
then Algorithm 2 almost surely converges to a quasi-Hamiltonian basis in a finite number of steps.

Next we wished to demonstrate, numerically, the prevalence of quasi-Hamiltonian bases in the random
polytope WHβ(Ḡn,p). Hence, Algorithm 2 has been modified as described in Algorithm 3.

Algorithm 3

1: Input: A graph G and a positive integer MaxStep
2: Step ← 0
3: Counter ← 0
4: B ← an initial feasible basis for the polytope WHβ(G)
5: while Step 6 MaxStep do

6: B ← a basis chosen uniformly at random from the feasible bases adjacent to B
7: if the current feasible basis is a quasi-Hamiltonian then

8: Counter ← Counter+1

9: Step ← Step+1

10: Output: Counter (the number of visited quasi-Hamiltonian feasible bases)

Thus, Algorithm 3 counts the number of quasi-Hamiltonian bases visited during a prescribed number of
steps, say MaxStep, for an input graph G. We ran this algorithm for 100, 000 steps on the same seven Ḡn,p

graphs as reported above and with β = 0.999. The results are summarized in Table 3, where the second column
lists the number of visited feasible bases (out of 100, 000) that were quasi-Hamiltonian. These numbers are
remarkably high and appear to be a direct consequence of both the nature of wedge constraints and the high
value of β. This is consistent with Theorem 5 and suggests that many of the additional extreme points created
by wedge constraints may be quasi-Hamiltonian.

7. Conclusion

This paper should be seen as a continuation of results reported in Feinberg [14], Ejov et al. [10], Eshragh
et al. [13] and Eshragh and Filar [12]. The original idea of exploiting the discounted occupational measures
in MDP in which a graph G is embedded led to algorithmic insights only after the structure of the associated
polytope Hβ(G) had been examined in more detail. In particular, the analysis of extreme points of Hβ(G)
presented in [10, 12] necessitated a more precise analysis of their corresponding feasible bases (Proposition 1
and Theorem 3). The subsequent analysis of the expected prevalence of the five types of feasible bases in
the random polytope Hβ(Gn,p) (Theorem 4) exposes the essential difficulty of HCP by demonstrating the
asymptotic dominance of non-Hamiltonian bases of Type 4 (Corollary 2). On the positive side, it follows from
Theorem 4 that, asymptotically, the expected number of Hamiltonian bases is twice that of non-Hamiltonian
bases of Type 1 in the random polytope Hβ(Gn,p). This is important in view of Theorem 5 (proved in [12]),
which suggests that adding the wedge constraints and thereby converting Hβ(G) to WHβ(G) results in a
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Table 2. Dependence of
Algorithm 2 on β for the in-
put graph Ḡ30,3/10

Value of β No. of Steps

0.5 fail
0.6 fail
0.7 fail
0.8 fail
0.9 fail
0.99 1944
0.995 1139
0.999 1001
0.9995 84
0.9999 23

Table 3. Number of
quasi-Hamiltonian bases
visited by Algorithm 3

Random Graph No. of Q-HBs

Ḡ10,3/10 70, 197
Ḡ20,3/20 47, 897
Ḡ30,3/30 6629
Ḡ40,3/40 34, 434
Ḡ50,3/50 19, 472
Ḡ60,3/60 1790
Ḡ70,3/70 2863

polytope where searches for quasi-Hamiltonian bases may be more effective. Recall that in Section 2 we
noted that the random walk based approach leads to an efficient algorithm provided (i) there are sufficiently
many feasible bases corresponding to Hamiltonian cycles, and (ii) the convergence of the random walk to the
uniform distribution is sufficiently fast. While Corollary 2 is bad news regarding condition (i) for Hβ(G), the
numerical results of Section 6 indicate that the situation is much better forWHβ(G). More precisely, we make
the following conjecture on the feasible bases of the random polytope WHβ(Ḡn,p).

Conjecture 1. There exist positive constants c, δ and k, such that for all values β ∈ (1− e−cn, 1), with high
probability, the expected proportion of feasible bases of WHβ(Ḡn,p) that are quasi-Hamiltonian is at least δ/nk.

This conjecture states that there are sufficiently many quasi-Hamiltonian feasible bases in the polytope
WHβ(G) for large values of β. This statement was supported by numerical results reported in Section 6.
Proving this conjecture would be a big step towards an efficient variant of Algorithm 1 by sampling feasible
bases of WHβ(G) instead of extreme points of Hβ(G).
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